
Materials modelling with Density 
Functional Theory

Michele Amato
Laboratoire de Physique des Solides (LPS)

Centre de Nanosciences et de Nanotechnologies (C2N)
Université Paris-Sud, 91405 Orsay, France

GDR PULSE 2017 - Atelier Simulations
Université Pierre et Marie Curie, Paris (France)
5 October 2017



Bibliography



Bibliography

Materials modelling 
with Density Functional Theory

(Chapters 1,2,3)
F. Giustino, OXFORD 

http://dft.uci.edu/doc/g1.pdf

The ABC of DFT
Kieron Burke and friends, 

University of California, Irvine 

Computational
Materials Science
(Chapters 4,5,6) 

J. Gunn Lee, CRC Press

50

http://dft.uci.edu/doc/g1.pdf


Further Bibliography



Original Papers
• Inhomogeneous Electron Gas, P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964)

• Self Consistent Equations Including Exchange and Correlation Effects, W. Kohn and
L.J. Sham, Phys. Rev. 140, A1133 (1965)

Reviews
• Nobel Lecture: Electronic structure of matter wave functions and density
functionals, W. Kohn, Rev. Mod. Phys. 71, 1253 (1998)

• The density functional formalism, its applications and prospects, R.O. Jones and
O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

Books
• Density Functional Theory of Atoms and Molecules, R.G Parr and W. Yang, Oxford
University Press, New York (1989)

Further Bibliography



Outline

• Computational materials modeling from first principles 

• Many-body Schrödinger equation 
• Clamped nuclei approximation
• Independent electrons approximation
• Mean field approximation 

• Density Functional Theory



Outline

• Computational materials modeling from first principles 

• Many-body Schrödinger equation 
• Clamped nuclei approximation
• Independent electrons approximation
• Mean field approximation 

• Density Functional Theory



Computational modelling from first principles



Computational modelling from first principles

• The developement and use of mathematical models for describing and
predicting certain properties of materials at a quantitative level



Computational modelling from first principles

• The developement and use of mathematical models for describing and
predicting certain properties of materials at a quantitative level

• ‘Ab initio’ or ‘from first principles’ refers to a bottom-up modelling strategy in
which we do not use any empirical parameters



Computational modelling from first principles

• The developement and use of mathematical models for describing and
predicting certain properties of materials at a quantitative level

• ‘Ab initio’ or ‘from first principles’ refers to a bottom-up modelling strategy in
which we do not use any empirical parameters

• Such kind of calculations are completely based on quantum mechanics, that can
be considered as an engineering tool



Computational modelling from first principles

• The developement and use of mathematical models for describing and
predicting certain properties of materials at a quantitative level

• ‘Ab initio’ or ‘from first principles’ refers to a bottom-up modelling strategy in
which we do not use any empirical parameters

• Such kind of calculations are completely based on quantum mechanics, that can
be considered as an engineering tool

• The complexity of such problems require the use of supercomputers



Computational modelling from first principles

• The developement and use of mathematical models for describing and
predicting certain properties of materials at a quantitative level

• ‘Ab initio’ or ‘from first principles’ refers to a bottom-up modelling strategy in
which we do not use any empirical parameters

• Such kind of calculations are completely based on quantum mechanics, that can
be considered as an engineering tool

• The complexity of such problems require the use of supercomputers

• This is a discipline at the boundary between materials science, physics and
chemistry on the one side, and applied mathematics and software engineering
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DFT is a very effective technique for studying molecules,
nanostructures, solids, surfaces and interfaces by directly solving
approximate versions of the Schrödinger equation

R.O. Jones, Rev. Mod. Phys. 87, 897 (2015) 2
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Density Functional Theory (DFT) 



L. E. Ratcliff et al., Comput. Mol. Sci. 7, 1759 (2017)

Density Functional Theory (DFT) 

DFT methods are QM based 
and applicable from few tens 

to more than 1000 atoms 
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Popularity of Density Functional Theory (DFT)

• Transferability: same technique for describing different classes
of materials

• Simplicity: based on simply and intuitive equations

• Realiability: possibility of making direct and quantitative
comparison with experiments

• Software sharing: online platforms and adoption of open-source
software model

• Reasonable starting point: even when it fails in describing
correctly a property, it respresent an accurate starting point for
more accurate theory (more computationally demanding)
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The Coulomb interaction 

Materials = electrons + nuclei 

Repulsion between electrons Repulsion between nuclei

Attraction electrons-nuclei

+ e-F F

F F
e-e- +

F F
+
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Many-body Schrödinger equation

Time-independent Schrödinger equation 

Knowledge of the wave function 

Probability of finding a particle in r
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Many-body Schrödinger equation

One electron case

What does happen if we add more electrons?
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Many-body Schrödinger equation

In the case of N electrons and M nuclei:

The probability of finding one electron at r:

The electron density is then:

and  
8
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Many-body Schrödinger equation

Example of Laplace operator for particle 1:
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Many-body Schrödinger equation
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Many-body Schrödinger equation in atomic units

Kinetic energy of electronsKinetic energy of nuclei

(Potential energy)nn (Potential energy)ee

(Potential energy)en

1 Ha 27.2114 eV

1 bohr 0.529177 Å

1 a.u. of mass 9.109382·10-31 Kg

Atomic units 
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The many body electronic structure problem 

Schrödinger equation for interacting particles 

Ne electrons
Nn nuclei
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Some comments 

• The many body electronic structure problem is exactly
solvable for two particles (analytically) and very few
particles (numerically)

• The exact solution is immensely complicated, but also
rather useless

• How to deal with N ~ 1023 particles?

• In the case of solids and molecules, we can find some
useful approximations
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• Mean-field approximation
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cannot move
• We can neglect the kinetic energy of the nuclei and their
Coulomb repulsion becomes simply a constant
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Clamped nuclei approximation 

The wave function can be now considered as a function 
of only electronic coordinates while ignoring the 

dependence on nuclear coordinates 

Coulomb potential of nuclei experienced by electrons 

Fundamental equation of electronic structure theory

17
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Further simplifications 

Many-electron Hamiltonian

Single-electron Hamiltonian

Many-electron Hamiltonian rewritten:
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The first drastic approximation that we can consider 
consists in neglecting the coulomb repulsion between electrons

The wave function can be written as:
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Some comments 

• The independent electrons approximation carries two
important drawbacks

• It does not obey to the Pauli exclusion principle, which
requires that the function changes sign whenever we
exchange two electrons, i.e. if we swap r1 and r2

• The Coulomb interaction between electrons is of the
same order of the other terms and cannot be neglected

• How can we take into account these effects?
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Exclusion Principle 

The many-body wave function must change sign 
if we exchange the variables of any of the two electrons

If  we have two particles a wave function 
that satisfies this requirement is defined as follows: 

For N electrons we have: 

Slater 
Determinant 
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Mean-field approximation  

Our objective is to keep an independent particle description
by retaining the Coulomb repulsion between electrons 

Poisson Equation

Hartree Potential
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Mean-field approximation
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Mean-field approximation: Hartree Equations  
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Mean-field approximation: Hartree Equations  

VH is the average potential experienced by each electron
This approach is a ‘self consistent method’   

24
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Some comments   

• The differential equation in 3N dimensions of the
many-body problem has been replaced by N three-
dimensional equations

• This approach has to done numerically, but it is feasible
in terms of computer memory

• The mean-field approximation would be very good if
the electrons were classical particles

• This approach is still not very accurate for the study of
materials at the atomic scale
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Introduction to Hartree-Fock equations   

• Electrons do interact, but this interaction maybe can be
considered not too strong
• One can still look for a solution in terms of a Slater
determinant
• Which is the form of the single-particle wave functions?

To find the answer we have to apply 
the variational principle to our system 
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What we have to do is to minimize E with respect 
to variations of the functions in the Slater determinant 

and require these functions be orthonormal:
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Hartree-Fock equations   

2



Hartree-Fock equations   

2



Hartree-Fock equations   

Fock exchange 
potential

28
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Some comments   

• Thanks to the Hartree-Fock equations we moved from
‘classical’ electrons in the mean field approximation to
‘quantum’ electrons

• This refinement introduces the non-local potential
Vx(r,r’) in the single particle equations. This complicates
enormously the practical solution

• The potential Vx derives from Pauli’s exclusion principle
and prevents two electrons from occupying the same
quantum state
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What is missing?   

• We have eliminated the Coulomb interaction between electrons
and transformed the 3N dimensional many-body Schrödinger
equation into N three-dimensional equations

• We have re-introduced the Coulomb repulsion between electrons
using classical electrostatics, while assuming independent electrons

• We have added the exchange interaction in order to take into
account the quantum nature of electrons

• The only remaining element left out of the picture is the
correlation between electrons
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Electronic correlation  

• Due to the Coulomb repulsion, the probability of finding
an electron somewhere will decrease if there is another
electron nearby

• This means that

• To take into account also this effect, we can add another
component to the single-particle potential Vn+VH+Vx

• We will call this additional term Vc
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Electronic correlation  
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Kohn-Sham Equations  

• We have introduced Vc

• We have simplified Vx, making it to depend only on r

• We still do not know the exact form of Vx and Vc, but
convenient and accurate approximations have been done
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It can map, exactly, the interacting problem to a non-interacting one

ρ(r)  

Hohenberg and Kohn, Phys. Rev. B 136, 864 (1964) 

a set of non-interacting electrons 
(with the same density as the 
interacting system) in some 

effective potential

interacting particles in a 
real external potential

Density Functional Theory (DFT)
W. Kohn

Nobel Prize in 
Chemistry in 1998
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Total energy of the electronic ground state 

The structure of the Hamiltonian does not depend on
the particular material under consideration

Any change in E is associated to a change in the wave
function ψ

It is possible to say that E is a functional of ψ:
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Density Functional Theory concept 

• The core concept of DFT is the observation that, if E is
the lowest possible energy of the system, i.e. the energy
of the ground state, then E is a functional of the
electron density only:

• This observation is quite remarkable because the
electron density is function of only three coordinates
and it is not complicated as the wave function

• All we need for calculating the energy of the system is
the electron density n
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Hohenberg-Kohn theorem 

In the ground state the electron density determines uniquely the
external potential of the nuclei:

In any quantum state the external potential Vn, determines
uniquely the many-body electron wavefunction:

In any quantum state the total energy, E, is a functional of the
many-body wavefunction:

In the ground state the density determines uniquely the total energy:

This indicates that the total energy must be a functional of the density:
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Hohenberg-Kohn theorem 

Density Functional
Exact form still unknown
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The Kohn-Sham idea 

• The first term in the functional is already explicit dependent on the
density, n
• There are two terms in which the dependence on the energy is not
implicit
• The idea of Kohn and Sham was to split these implicit terms into the
kinetic and Coulomb energy of independent electrons plus an extra
term which account for the difference:

Total energy in the independent electrons approximation

External
Potential

Kinetic 
Energy 

Hartree
Energy 

XC
Energy 
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The Kohn-Sham idea: energy decomposition
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The Kohn-Sham idea: energy decomposition
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The Kohn-Sham idea: the He atom
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How can we determine the ground state density? 

We can apply the Hohenberg and Kohn variational principle:

KOHN-SHAM equations 

Exchange correlation potential
(unknown)
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Some comments on DFT 

• The Kohn-Sham theory can be regarded as the formal
exactification of Hartree theory

• We know that there must be a functional Exc[n] which
gives the exact ground state energy and density

• We do not know what this functional is, but we can
build some accurate approximations

• One of the simplest one is the local density
approximation (LDA)
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Putting DFT theory in practice: self consistency 
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Putting DFT theory in practice: self consistency 

Initial guess for 
electron density

New density = old density
NO

YES 47
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Calculations of materials properties with DFT 

• Equilibrium structures 
• Vibrational properties and vibrational spectra
• Binding energies of molecules and cohesive energies of solids
• Ionization potential and electron affinity of molecules 
• Band structures of metals and semiconductors 

Good accuracy 

• Electronic band gaps of semiconductors and insulators
• Magnetic properties of Mott-Hubbard insulators (systems with
localized d and f orbitals)
• Systems where van der Waals forces are important, e.g. proteins

Failures 
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DFT software packages 



SIESTA code
http://icmab.es/siesta VASP code 

http://www.vasp.at

Quantum espresso code 
www.quantum-espresso.org

DFT software packages 
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